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designed to measxire secondary pressures Ave  to bulk cavitation phenomena, as well 

as direct shock wares. The planning and experimental details sire discussed, and 

the results given. 

The present theory of bulk cavitation was found inadequate for the relatively 
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1.  IWrRODUCTION 

1.1 During the Sunmer of I969, the Naval Ordnance Laboratory conducted an 

experimental program, involving the detonation of five large explosive charges 

under vater, at Mono Lake, California. The primary objective of the program was 
1* 

the measurement of the air blast from large shallow btxrsts.   A secondary objective 

was the measurement of the \mderwater shock waves and the btilk cavitation phenouena. 

This was done to evaluate the effect of the underwater pressures and the bxilk 

cavitation on the air blast field, and to acquire knowledge useful for the prediction 

of the damaging effects of cavitation closure on ships and submarines. In order to 

achieve this objective, the Underwater Explosions Division undertook the mapping 

of the underwater pressure field. The measurements of the motion of the water-air 

interface were made under contract by the Engineering Physics Company (EPCO). 

The present report documents the measurement of underwater pressures at Mono Lake, 

and includes a discussion of the Implications of the results. 

2.  BACKGROUND 

2.1 When a strong shock wave from an underwater explosion is incident upon the 

air-water interface, the reflected pulse tends to create sizable tensions in the 

water. Since water can only withstand weak tension,** the water will rupture or 

cavitate, producing an extensive region of water filled with bubbles of water vapor. 

This cavitation process begins some finite distance below the water surface, leaving 

a layer of \mcavitated water overlying the cavitated region. The pressure in the 

cavitated region is very low, near the vapor presstcre of water. The sturface layer 

has been given an upward velocity by the passage of the direct shock and its 

surface reflection. Thus, the surface layer is spalled upward, and is accelerated 

downward by the force of gravity and the pressure difference across the spall.*** 

The spalled surface layer eventually falls back to its original position. Impacting 

the by now quiescent water beneath, «md causing secondary pressure pulses to be 

* Refers to references on page 13. 

** The degree of tension that sea water can withstsuid is not weU. known. It has 
been variously estimated as 6OO psl by Kennard in reference 3, zero by Gushing 
in reference 6, and other values between these. 

*** The interaction of the shock wave with the svirface tends to produce spray at the 
svirface. This effect is usually neglected in discussions of bulk cavitation. 
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emitted. The spall does not impact or close simultaneously at all horizontal 

ranges from surface zero. Closure occurs first at one horizontal range, and then 

progresses inward and outward from that location. The mipture process is generally 

termed bulk cavitatlon. Detailed descriptions of this process and associated 

phenomena are given by Gushing, ' ' and Snay and Krlebel. 

2.2 The occurrence of b\ilk cavitatlon has been noted in connection with eaqplosions 

of greatly varying sizes and geometries. The phenomena of speuLlation and closure 

affect the air blast field and generate sizable secondsuy pressure vaves In the 

•water. These secondary pulses may, under some circumstances, be of sufficient 

magnitude to cause damage to siirface vessels and submarines. The cavitated region 

tends to greatly attenuate pressure vaves passing through it, and could act to 

shield stirface vessels from the bottom reflected shock wave. These considerations 

have motivated the study of bulk cavitatlon. 

k 5 6 
2.3 A theoretical treatment of bulk cavitatlon is given by Gushing. ' *   This 

is an acoustic calculation -vdilch takes no account of the effect of the bottom, 

refraction, or anomalous cutoff. An experimental investigation to test this theory 

was made by Walker and Gordon.  In this experiment 10,000-lb HBX-1 charges were 

fired at 50 and 100-foot depths in 150 feet of water in the Chesapeake Bay. An 

unusual feature of these tests was the observation of negative bottom reflections. 

Since substantial tension waves were being reflected at both the water surface and 

bottom, two cavitatlon fronts were generated. These fronts tended to reinforce 

one another in some areas of the water, leading to greatly enhanced cavitatlon. 

Gushing's theory nevertheless yielded good agreement with measiu:ed surface motion 

and closure data. It appeared that the theory was adequate in these respects for 

the geometries tested. However, since all shots were at moderate depths, the 

theory had not been verified for relatively shallow shots. The Mono Lake program 

provided such a test. 

3. THE TEST SHE 

3.1 The program was carried out in Mono lake, California. This is a leurge salt 

lake, situated at an altitude of 61+00 feet. Just east of the Sierra Nevada 

Mountains. The ambient atmospheric pressure at this altitude is about 11.5 psl. 



NOKTH 70-lb? 

3.^ liainples of lake water were obtained diiring the teat (see belov). Those from 

depths of 5, UO, an<1 7'> feet below the surface were analyzed,* and the compositions 

are given in Table 1. The values are not greatly different from those on record 

at the Lee Vining Ranger Station. The composition of the lake water is much 

different from that of sea water. The percentage, by weight, of dissolved minerals 

is roughly twice that of normal sea water, and the specific gravity is approximately 

1.05, as compeu-ed with a nominal value for sea water of 1.02. 

TABLE 1 

COMPOSITION OF MONO LAKE WATER 

5 ft 1^0 ft 75 ft 
Depth Depth Depth 

11,000 mg/l. 13,000 mg/l. 12,000 mg/l. 

3,U00 mg/l. 5,U00 mg/l. 6,000 mg/l. 

8,800 mg/l. 10,000 mg/l. 9,900 mg/l. 

17 mg/l. 91 «ng/l. 25 mg/l. 

Qk mg/l. 132 mg/l. 127 ™«/l- 
30 mg/l. 51 tng/l. 26 mg/l. 

8,000 mg/l. 9,000 mg/l. 9,000 mg/l. 

Carbonate as Sodium Carbonate 

Bicarbonate as Sodium Bicarbonate 

Stafate as SOj^ 

Calcium as Ca 

Boron as B 

Magnesium as Mg 

Chloride as Chloride 

3.3 It was noted that samples from increasing depths foamed or evolved gas 

(hydrogen sulfide was detected), and hence analysis of the samples is in error at 

least hy the amount of gas lost. Furthermore, the effect of the dissolved gas on 

the sound velocity is unknown. 

3.U The tests were fired in 100 feet**of water, one-half mile out from shore. 

The structure and composition of the lake bottom is essentially unknown. One 

sounding during the test brought up a small quantity of material from the surface 

of the lake bottom. It was of a slimy consistency, organic in nature. The 

* The ajialysis of water samples was done by C. W. England Laboratories, Inc., 
Washington, D. C. 

** The nominal water depth was checked with a sounding during the program, ajid 
found to be correct within the accuracy of the sounding (~ ±2 feet). 
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quantity and distribution of such material on the lake bottom is unknown. On 

several occasions, immediately after a shot had been fired, large qviantities of 

vbat appeared to be bottom material were seen floating on the surface. This 

indicates that at least the uppermost bottom layer was composed of matter not much 

more dense than the lake water, ■ 

3.5 A sound velocity profile for the lake was needed to determine the relative 

importance of refractive effects. Since no velocimeter was available at the test 

site, the following procedure was evolved. Samples of water from increasing depths 

were obtained in a small mouthed gallon jug by lowering it, wei^ted, stoppered, 

mouth up, and air-filled, to the desired depths. The stopper was then pulled with 

a small wire -tftiich reached the surface. After the Jug filled with water it was 

pulled to the surface and the temperatvire of the sample measured with two household 

thermometers. The temperature profile obtained is shown in Figure 1. Peurbs of 

several samples of lake water were saved in storage jars for later analysis. 

After return to NOL, each sample was placed at the proper temperature for its 

depth and tested with a velocimeter. The velocity profile constructed in this 

way is shown in Figvire 2. This profile was used in a ray tracing computer program 

at NOL. It was found that for the Mono Lake test geometries, refractive effects 

were entirely negligible. If a shot was fired in the lake at a greater depth of 

btirst (e.g. kO  ft or greater), refraction might play a more important role. 

3.6 Although there are no fish evident in the lake, the waters teem with brine 

shrimp (Artemla Salina). These creatures grow to a length of about I/2 inch. No 

estimate of the concentration of these shrimp is available. It was noted, however, 

that in water samples obtained below a depth of about 20-30 feet, the concentration 

of shrimp was greatly reduced. 

k.    PLAN OF THE EXPERIMENT 

k.l   The sizes and geometries of the shots at Mono Lake were determined solely 

upon consideration of the air blast study. The shot parameters are given in 

Table 2. " 



NOIffR 70-18? 

TABLE 2 

MONO LAKE SHOT EARAMETERS 

Shot Explosive Weight 
(lb) 

Depth of Burst 
(ft) 

Charge Radius 
(ft) 

1 HBX-1 10,000 5.2       r 3 

2 HBX-1 10,000 9.5 3 

3 HBX-1 10,000 17.6 3 

k HBX-1 10,000 21+.0 3 

5 Llthanol n,5i6» 10.7 3.5 

'*'' Actual vel£^t determined at site. 

k.2   The HBX-1 charges vere cast spheres. The Llthanol charge was loose powder 

that was packed into a spherical steel case at the site. 

k,^   For the various shot geometries. Engineering Physics Company provided predictions 

of the following:  (l) spall closure time and depth vs horizontal range, (2) peak 

pressure and dtnration of secondary pressure pulse vs horizontal range. Using these 

predictions, the optimum horizontal ranges for the placement of four vertical gage 

strings were chosen. The closest station was situated outside the expected column 

radius, but as close as feasible to surface zero. The next station was at the 

range of tnaxlTnum expected secondary pressure levels. The third station was at the 

predicted horizontal range of first closure. The outboard station was near the 

range of longest predicted duration of the secondary pressures. The array of gage 

station locations is given in Table 3. 
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TABLE 3 

HORIZONTAL RANGE TO GAGE STATIOl^  (FT) 

Station Number 

Shot 1 2 3 k 

150 215 275 350 

150 255 320 400 

175 290 380 500 

175 290 380 500 

170 235 295 1^00 

1 

2 

3 

k 

5 

k,k   At each gage station, a string of tourmaline piezoelectric gages vas suspended. 

The gage depths at each station were 2,  11, 22, 33, ^f  50, 55, 66, 77, 80, and 

88 ft. It vas felt that with this array, the following information could be 

obtained: 

If.4.1 Extent of the cavitated region. At a given point in the water, if 

cavltation occurs, the arrival of the  surface reflection of the shock wave should 

lower the ambient pressure from the hydrostatic head to the vapor pressvtre of water. 

The pressure stays rou^ly constant at this level until closure occurs. This 

apparent baseline shift of the gage record is a clear indication of the occurrence 

of cavitation.* 

k.k.2 The closvire process. When the cavitated region closes, secondary 

pressirre pulses are emitted. The placement of the gage array should allow the 

time and depth of closure eind the secondary pressure and duration to be determined 

at several crucial horizontal ranges. 

* R. A. Wentaell, et al, in reference 9, siiggest the appearance of a sharp negative 
pressure pulse as aji indication of cavitation. Tb.e  frequency response of the 
recording system at Mono Lake would not allow such a spike to be detected. 



NOUTR 70-187 

'♦•'--3 Mapping of the shock pressure field. It is well knovn, that for most 

shallow underwater explosions, a region exists in which the stirface reflection, 

traveling in a shocked mediim, has cau^t up with the direct shock, and arrives 

coincident with it, eroding the peak pressure, and changing the wave shape. This 

is known as the region of anomalous siirface cutoff. The boundary of this region 

may be calculated using the method of Keil,  and is shown in Pigxire 3 for each 

shot. As the depth of burst is decreased for a given charge wei^t, the anomalous 

region comes closer to the bvirst point, and encroaches more Into the region of 

interest at Mono Lake. In this region, the entire picture of a shock arrival 

followed by a surface reflection must be abandoned. The normal similitude equations 

break down, and the pressures ajid pulse shapes must be calculated using a non-linear 

approach. This has been done by Rosenbaum and Snay.   Since Gushing's theory is 

linear, and assumes the particle dynamics of a standard oblique reflection, one 

would not expect the calcxilation to hold in the anomalous region. However, since 

no non-linear cavitation calculation has been done, the linear theory was iised to . 

determine test geometry. 

5.  INSTRUMENTATION 

5.1 Four instrumentation stations were utilized on each shot in the program, one 

at each of the rsinges indicated in Table 3. Each station consisted of a wooden 

platform, approximately 12' x 12', supported by empty oil drians lashed to the 

underside. Each platform was open at the center to allow for the mooring of the 

EPCO volocity meters. A string of gages was suspended from each platform. These 

gages were tourmaline piezoelectric (PE) gages made by Crystal Research Corporation. 

The waterproofing configuration for these gages is shown in Figure k.    Each gage 

VSLS  movmted on leads molded into an epoxy oil barrier. The leads were attached 

to a coaxial cable, and the connection waterproofed with Bostic 2292 and rubber 

tape. The gage was sealed into a plastic tube filled with lOO-centistoke silicone 

oil (DOW Corning DC-200). Research conducted at NOL had indicated that this method 

of waterproofing affects the gage output less than any of the several other methods 

tried. The output of each gage was conditioned and calibrated by a gage signal 

amplifier (GSA), and recorded on tape recorders that had been developed with DASA 

funding under DISTANT WATERS Project LN-501. The GSA's and the recorder for most 

gage strings were located on the instrumentation platform above the string. The 

GSA's and recorder for the innermost station were moixnted on the second platform. 
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5.2 Each gCLge string consisted of eleven PE gages, suspended at the depths 

previously given in paragrajii k.k.    The instrumentation rig is shovn in Figure 5» 

5.3 A Model 911 time code generator made by the Electronic Engineering Company vas 

used to provide a time code to all recorders (underwater, airblast, emd svtrface 

velocity). This provided a common time base for all records as well as positive 

shot identification by dating. This time code has a 10-kHz carrier frequency. 

"j.k    In order to better resolve the expected secondary pressxires, at a given delay 

after the shock arrival, a padding capacitor in the gage input circuit vas dis- 

connected to increase the gain on each recorder channel. The gain vas generally 

increased by a factor of 10 to 20, as predetermined for each channel. 

6. ANALYSIS METHODS 

6.1 The tindervater pressure data consists of pressure time records on magnetic 

tape. All tapes were played back on the DISTANT WATERS tape playback system, an 

in-house developed unit, as axe the portable recorders. Analysis of this data 

was performed in two ways: 

6.1.1 Analogue analysis. Visicorder playouts of all the records were made. 

From these playouts, the important arrivals could be located and arrival times read 

from the time code present on each tape. 

6.1.2 Digital analysis. Each of the records was digitized and analyzed on 

the lEM 7090 computer using a computer program developed by R. S. Price of NOL. 

This program corrects the nonlinearity of the recording system used at Mono Lake, 

and provides a readout (in psi) of the direct shock pulse. 

7. RESUUTS 

7.1 At Mono Lake, 152 valid pressure time histories were obtained from a total of 

220 data channels (5 shots, h  recorders per shot, 11 data channels per recorder). 

Of these 152 records, IO5 could be utilized throughout the entire record. A typical 

set of records from a single gage string is reproduced in Figure 6. 

7.2 The noise level on most channels was generally hig^. At the present time, 

the cause of this noise has not been determined. 

7.3 Neither of the anticipated indications of cavltation phenomena, the drop 

below ambient pressure, nor the appearance of secondary pressure pulses, was 

8 
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evident in the pressure-time histories. However, there is other evidence that bulk 

cavitation did occur. The stirface velocity histories of reference (2) indicate that 

cavitation occ\irred. If cavitation does not occur, the water remains a continuous 

medium. This results in a time of flight (from shock wave arrival to restoration of 

the original surface position) considerably shorter than those indicated by EPCO's 

surface motion data.* This Is an indication that cavitation did occur at Mono Lake. 

l,h    That the theoretically predicted characteristics of the cavitation phenomena 

were not observed is not siirprising. As pointed o\it above. In paragraph h,k,3, 

Gushing'3 calculation makes assumptions that are clearly not valid for the Mono 

Lake test geometries. Consequently, the gages were not placed in the proper locations 

to observe cavitation phenomena. 

7.5 Besides the direct shock arrival, there was, in general, at least one bottom 

reflected pulse on most of the records. In some cases, two bottom reflected 

arrivals were noted. Hhe bottom reflections were always positive, indicating that 

the bottom was of greater acoustic Impedance them the water. 

7.6 To provide correlation with the air blast and stirface motion data, the surface 

arrival times of the direct and bottom reflected primary pulse were determined 

ftrom the data and are given in Tables k and 5. These arrival times are precise to 

±0.1 msec. They agree with those givei 

precision of those data is considered. 

2 
±0.1 msec. They agree with those given by Schultz and Gushing if the ±.5 msec 

TABLE k 

SURFACE ARRIVAL TIME OP DIRECT SHOCK** (msec) 

Station Number 

Shot 1 2 3 k 

27.2 39.7 52.1 65.8 

27.7 — 60.1 76.1 

32.1+ 51+.2 71.7 91^.8 

— 54.1 72.6 95.7 

27.6 kk.2 5^.9 75.9 

1 

2 

3 

k 

5 

*The dynamics of the stirface, with and without cavitation, is discussed by Malme, 
et al, in reference 12. See particularly pp U8-52. 

**A11 times are measured from the time of detonation. 

9 
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TABLE 5 

SURFACE ARRIVAL TIMES OF BOTTCW REFLECTED SHOCK (msec) 

Station Nianber 

Shot 

68.0 
72.8 

~~ 

78.7 86.5 

86.3 103.9 
107.5 

87.6 
93.0 

109.1^ 

69.8 — 

1 50.6        58.0 

3 — 73.1 

k - 73.6 

5        — — 

Where two tltaes are given, two distinct arrivals were noted. 

7.7 Some of these arrival times are considerably later than csilculated from 

nominal shot geometries. Schtiltz and Gushing concluded that this indicated that 
3 cavitation was present in the water, since Gushing showed that sound speed in 

cavitated water is very slow. To check this conclusion, plots were made of the 

arrival times of all important pulses for each gage string (Figvires 7 through 17). 

Extrapolating the direct and bottom reflected arrivals, the depth of the bottom 

reflection was determined. The bottom reflection, in general, occurred at a 

greater depth than the nominal bottom depth. This factor alone accounts for the 

delayed arrival times reported by Schultz and Gushing, and indicates that their 

conclusion was incorrect. It is clear that in some cases two distinct reflections, 

originating at distinct depths, occurred. This is indicative of the bottom 

stratification. 

7.8 The peak i>ressures for the direct shock were determined, and compared with 

theoretical predictions (Figures 18 throrigh 31)• These figures give experimental 

and theoretical peak pressttres for a vertical gage string. The theoretical 
11 

pressxrres were calculated by the method of Rosenbaum and Snay,  using a computer 

code developed by J. R. Britt of NOL. The theoretical cxurves show low pressures 

at the svcrface, due to erosion of the peak by anomalous cutoff, a gradxial increase 

10 
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with depth, as the pulses become less anotnalous, and then a decrease in pressure 

with depth below the anomalous region. The general character of the measured 

pressxires is most clearly seen in the data from Shot 1 Station 1 (Figure 18), The 

variation of peak pressure with depth is radically different from that ■vfeich theory 

predicts. A possible explanation for these results is given below. 

7.9 As mentioned above, there is a great concentration of brine shrimp in the 

Mono Lake water. Gruber and Meister  showed experimentally that suspensions of 

brine shrimp cause excess attenuation of sound waves in water. At Mono Lake, the 

upper 30 feet of water is particularly thick with the brine shrimp. The concentra- 

tion falls off below that depth, corresponding to a sharp decrease in water 

temperature (see Figure l). It is not known how the concentration of shrimp varies 

in the upper 30 feet. If the concentration of shrimp is greatest at some depth 

between the surface and 30 feet, the variation of pressure with depth may be 

qualitatively explained. Rays which travel ftrom the source to shallow gages 

travel throui^ varying concentrations of shrimp and are  greatly attenuated. As 

deeper gages are considered, the rays travel shorter distances throu^ the regions 

of high shrimp concentration, and are less attenuated. Thus it appears that the 

peak pressures may reflect the brine shrimp concentration and are not indicative 

of 'vdiat would occia* in an oceaja environment. 

8.  CONCLUSIONS 

8.1 The bulk cavitation theory of Gushing is not adequate for the Mono Lake test 

configurations. Since it doesn't consider the anomalous cutoff effect (see 

paragraph ^.'*.3), it is inadequate for relatively shallow shots, that is, shots 

for which the boundary of the anomalous region encroaches into the region of 

interest. For 5-ton HBX-1 charges, Cushing's theory suffices for burst depths of 

approximately hO  feet and greater. For other charge weights and compositions, 

individual comptttations must be made, since bulk cavitation and anomalous cutoff 

cajinot be scaled simultsuieously. 

8.2 Further, the failure of theoi^ to consider the effect of the bottom reflected 

shock wave restricts its applicability to geometries such that the bottom reflected 

pulse arrives in the region of interest only after cavitation closure has occurred, 

8.3 There are no indications of cavitation phenoaieiia in the underwater pressxire 

data. This is probably because the gage positions vere based on incorrect predictions. 

U 
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The surface velocity histories of reference (>>)  inJicate that cavitation did occur 

(see paragrajAi 7-3), but it seems likely,' that the events of interest vere not of 

siifficient tnagrdtude to be recorded at the gages. 

S.k   The pressure field data show a xiniqtie character \*iicb Is not predicted by 

theory. This may be explainable with reference to the large concentration of 

brine shrimp in the water at Mono Lake. These shrimp have been shown, experimentally, 

to cause excess attenuation of sound waves in water. 

8.3 The body of underwater data obtained in this program is of use nuainly in 

correlation with the surface motion and air blast data obtained in the same program. 

The unusual character of the data seems a function more of the pecviiar characteristics 

of the test site than of the explosion phenomena themselves. 

12 
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